Answer all Questions

Q1 (50 %): Check the two way shear action (punching shear) only around an edge Column (300×300) mm in a flat plate floor of a span (5.5 × 5.5) m. Find the area of vertical shear reinforcement if required. Assume d = 190 mm. Total $q_u = 25$ kPa (including slab weight), f_c = 28 MPa, $f_y = 414$ MPa.

Q2 (50 %): for the longitudinal interior frame (A) of the flat plate floor shown in figure below by using direct design method find:

1. Longitudinal distribution of the static moment at factored loads.

2. Lateral distribution of the moment at exterior support.

Slab thickness = 170 mm, d =144 mm $q_u = 20.0 \text{ kN/m}^2$ All edge beams = $350 \times 700 \text{ mm}$ All columns = $500 \times 500 \text{ mm}$ fc`= 25 Mpa, fy = 420 Mpa

Table 8.10.4.2—Distribution coefficients for end spans

-					
		Slab with	Slab without beams between interior supports		
	Exterior edge unrestrained	beams between all supports	Without edge beam	With edge beam	Exterior edge fully restrained
Interior negative	0.75	0.70	0.70	0.70	0.65
Positive	0.63	0.57	0.52	0.50	0.35
Exterior negative	0	0.16	0.26	0.30	0.65

$$C = \Sigma \left(1 - 0.63 \frac{x}{y} \right) \frac{x^3 y}{3} \qquad \qquad \beta_t = \frac{E_{cb} C}{2E_{cs} I}$$

v_c with non shear	$0.33 \lambda \sqrt{fc'}$
reinforcement is least of	$0.17 \left(1 + \frac{2}{\beta}\right) \lambda \sqrt{fc'}$
	$0.083 \left(2 + \frac{\alpha_s d}{b_o}\right) \lambda \sqrt{fc'}$
v_c with shear reinforcement	$v_c = 0.17 \lambda \sqrt{fc'}$
Maximum v_u with shear reinforcement	$v_u = \phi 0.5 \lambda \sqrt{fc'}$
Shear resist by reinforcement	$v_s = \frac{v_u}{\phi} - v_c = \frac{A_V f_y}{b_o s}$

Note: β is the ratio of long side to short side of the column $\lambda = 1$ for normal concrete $\alpha_s = 40$ for interior column, $\alpha_s = 30$ for edge column & $\alpha_s = 20$ for corner column

Table 8.10.5.1—Portion of interior negative M_u in column strip

	ℓ_2/ℓ_1		
$\alpha_{f1}\ell_2/\ell_1$	0.5	1.0	2.0
0	0.75	0.75	0.75
≥1.0	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown.

Table 8.10.5.2—Portion of exterior negative M_u in column strip

		ℓ_2/ℓ_1		
$a_{f1}\ell_2/\ell_1$	βι	0.5	1.0	2.0
0	0	1.0	1.0	1.0
0	≥2.5	0.75	0.75	0.75
≥1.0	0	1.0	1.0	1.0
	≥2.5	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown. β_i is calculated using Eq. (8.10.5.2a), where *C* is calculated using Eq. (8.10.5.2b).

Table 8.10.5.5—Portion of positive M_u in column strip

	ℓ_2/ℓ_1		
$\alpha_{f1}\ell_2/\ell_1$	0.5	1.0	2.0
0	0.60	0.60	0.60
≥1.0	0.90	0.75	0.45

Note: Linear interpolations shall be made between values shown.